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The contact deformation of a thick elastic strip when there are shear boundary stresses is considered. The existing asymptotic 
relations, which describe such interaction, are represented in the form of a system of two singular integral equations of the 
deformation of an elastic half-plane with additive corrections for the finiteness of the width of the strip. A similar form of writing 
the equations to a large extent formalizes the transfer of the formulations and the methods of solving problems for a half-plane 
to similar thick-strip problems. The problem of the indentation of a punch into a strip with adhesion is considered as an example. 
0 2003 Elsevier Ltd. All rights reserved. 

Contact problems for a thick strip are characteristic for the closeness of the corresponding integral 
equations and solutions to the equations and solutions of problems of the deformation of an elastic 
half-plane [l-3], which, to a considerable extent, enables one to formalize the transfer of the formulations 
and methods of solving problems for a half-plane to similar problems for a thick strip. Below this 
procedure is also used to solve the problem of the indentation of a punch into a half-plane with 
adhesion [4]. 

1. RELATIONS FOR A THICK STRIP 

Suppose a strip of width h occupies the region {x, y : x E (- , m ), y E [0, h]} and is in the state of plane 
deformation, due to the application to its upper boundary y = h of stresses q1 = zxy, q2 = -or, along 
the contact regionx E [-a, b]. The lower boundary y = 0 of the strip is assumed to be rigidly connected 
to an underformable base. 

Using a Fourier transformation one can establish the following relation between the stresses q1 and 
q2 and the displacements u and 2) of the upper boundary of the strip along the x and y axes [2-6] 

where E is Young’s modulus and v is Poisson’s ratio 

m = 7cEl[2(1-v2)], x = (I-2v)/[2(1-v)] 

Lj(S) = 
2rcsh2s - (-l)j4s 

D(s) ’ &2(s) = 
2tc(ch2s - 1) - 8(~ - l)-‘s2 

D(s) 

tf’rikl. Mat. Mekh. Vol. 67, No. 5, pp. 877-884, 2003. 

775 



776 I. A. Soldatenkov 

D(s) = 2rcch2s+4s2+1+rc2, K = 3-4~ 

where for ]z ] < 2 we have the following asymptotic expressions 

kj(Z) = -ln]t( + cj + 0(z2), j = I,2 

II: . 
k,,(z) = 2 slgnz + c12z + O(z 

3 
) 

Q-2) 

in which the coefficients cj and cl2 depend only on K [3]. 
If we introduce into consideration the size 1 = (a + b)/2 of the contact area and the small parameter 

TJ, then for a thick strip [5] 
l/h = -vj + 1 (1.3) 

Relation (1.3) denotes that the argument z of the functions kj(z) and kr2(2) is an infinitesimal of the 
order of TJ, which, in turn, enables us to use expressions (1.2) to represent them with terms 0(z2) and 
0(z3) omitted [2]. Substitution of these expressions into relations (1.1) and subsequent differentiation 
of the equations obtained with respect to x leads to the equations 

mu’(x) + XYP, = - 7cxq2(x) + j - 
b 4*c3& 

-p 

mu’(x) + xx c12Pl = - xxql(x) - I-- 
b q2(5)dc 

+5-x 

(1.4) 

where 
b 

Pj = I qj(x)dx, j = 1,2 (1.5) 
-4 

Note that Eqs (1.4) differs from the equations for the deformation of an elastic half-plane [7] solely 
by the presence on the right-hand sides of the additive constants Xclzh-‘Pj, which give a correction for 
the finiteness of the width of the strip. 

2. THE PROBLEM OF THE INDENTATION OF A PUNCH INTO 
A THICK STRIP WITH ADHESION 

Suppose a rigid convex punch is indented into a thick strip with adhesion due to the action of a shear 
load PI and a normal load P2 (see the figure), connected with one another by the loading relation 

P, = N(P,), P,>O (2.1) 

Connecting the system of coordinates with the punch (see the figure) we will assume that during its 
indentation, the dimensions a(t) > 0 and b(t) > 0 of the contact area increase monotonically with time 
t. This enables us to use the quantity a as the time parameter, assuming, in particular, that b = b(u) 
and Pj = Pj(u). 

The boundary conditions for the interaction of the punch with the strip in the case considered have 
the form 

4x, 0) = cp(x). u(x, a) = g(x); x E [-a, bl (2.2) 

where T(X) is a distribution of the tangential displacement of the boundary of the strip over the contact 
area and g(x) is a function describing the shape of the punch. We pose the following problem: it is 
required to obtain the distributions of the stresses ql(x, a) and q2(x, a) over the increasing contact area 
x E [-u, b] and also the unknown functions q(x) and b(u). 

We will replace the boundary displacements u and v in Eqs (1.4) by the right-hand sides of conditions 
(2.2). Then, following the well-known procedure [2], we multiply the first equation by i, the square root 
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Fig. 1 

of -1, and add the result to the second equation. As a result, we obtain 
equation 

the single complex-valued 

b 4(5 a) _ - 
-xxq(x,a)+ij*dS - f(x,a), XE [-u,b 

-a 

1 (2.3) 

where 

4(x9 a) = 4*(x, a) + iq,(x, a), f(x, a) = m[g’(x, a) + i$(x, a)] 
(2.4) 

The condition of equilibrium 

b 

P(u) = Pi(a) + P,(u) = Jq(x, a)& 
-a 

(2.5) 

also follows from expressions (1.5), taking the first relation of (2.4) into account. 
We further assume that the functions q’(x) and q’(x) satisfy ths Holder condition on any segment of 

the real axis. Then, by virtue of definitions (2.4), the function f(x, a) will possess the same property 
with respect to the variable x, and the bounded solution of Eq. (2.3) from the Holder class H[-u, b] 
will have the form [8] (9% is an operator) 

q(x, a) = A*f(x, a) - 

with the condition 
b- 

I 
pJfx = 0 

, 
-a 

Here 

A* = x[rc( 1 -x2)]-‘, II* = [x( 1 -x2)]-’ 

Z(X, U) = o*/(u + ~)(b-x)e-~~(*'"), D = const 

G-7) 

z u+x 
a(x,u) = 2ln6-x’ 7 = IIn!- 

x 1-x 



778 I. A. Soldatenkov 

Equations (2.1) (2.5) (2.6) and (2.7) represent a system of equations which enable us to obtain the 
unknown functions qi(x, a), q2(x, a), (p’(x) and b(a) [4]. By making the formal replacement f(x, a) + 
f(x) this system takes the form corresponding to the interaction of the punch with a half-plane,_which 
enables us to use the procedure proposed earlier [4] to simplify it. To do this we must expressf(x, a) 
in condition (2.7) in terms of g’(x) and g’(x) using relations (2.4) and substitute expression (2.6) for 
q(x, a) into the right-hand side of equilibrium condition (2.5) change the order of integration [4] and, 
as previously, express f(x, a) in terms of q’(x) and g’(x). As a result we obtain the equations 

wa; cp’) = -o(u) - ip$p(u) 

P(a) = PO(u) - &J?*ml( 1 + iT)o(u) - $SoB*mX2(a; cp’) + ip$B*l( 1 + iz)P(a) (2.9) 

where 

PO(U) = i X(x, a; mg’)dx, w(a) = iXC,(a; g’) 
--(I 

6, = (n/2)lch(az/2), 1 = I(u) = (a + b(a))/2 

(2.10) 

Note that Eqs (2.8) and (2.9) reduce to the corresponding equations for a half-plane [4] as h + 01 
(u + 0). Moreover, we can give it a form that is more convenient for subsequent investigation if we 
eliminate the unknown function P(u) from their right-hand sides. To do this we must first eliminate 
P(u) from the right-hand side of Eq. (2.9) using Eq. (2.8), after which, using the equation thus obtained, 
we can also eliminate P(u) from the right-hand side of Eqs (2.8). As a result, taking into account the 
equality B* = X/(46$, we obtain the equations 

SC,@; cP’> - ip&(u; cp’) = -o(u) + ip~S,P,(a), P(a) = P,(u) + 2s, =q(u; ($1 (2.11) 

where 

&(a; cp’) = j 
[I( 1 + iz) - (a + x)]eta(“‘a)(p,(x)dx 

--LI &a +x)(b-x) 

We must supplement these with loading law (2.1), which relates the real part Pi(u) and the imaginary 
part Pz(u) of the function P(u). As a result we obtain a system of equations in the functions q’(x) and 
b(u), which define the contact stresses qI(x, a) and q2(x, u) by means of Eq. (2.6) using relations (2.4). 

We recall that the calculations carried out above for the problem of the indentation of a punch with 
adhesion into a thick strip is based on Eqs (1.4) for the deformation of such a strip, the correctness of 
which, in turn, is ensured by condition (1.3). In the case of an increasing contact area, which occurs in 
the interaction considered, to satisfy this condition one must limit the size 1 of the contact area to a 
certain value I* and assume 

l,lh = q 4 1 (2.12) 

Condition (2.12) enables us to introduce into consideration an additional small parameter E = xc12rl 
and obtain, taking definition (2.4) for u into account, the relation 

P =&If*, (El@1 (2.13) 

which indicates the fact that u 3 0 as rl + 0. 
Further, as an example, we will consider the symmetrical formulation of the problem of the indentation 

of a punch with adhesion into a thick strip 
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N(z) = 0, z E (--, -); g’(x) = R-lx, R = const (2.14) 

Conditions (2.14) indicate that, by virtue of the loading relation (2.1), there is no shear load Pi, and 
the punch has a parabolic form. As far as the solution of this problem is concerned we make the following 
assumptions 

b(u) = a, cp’( n) = w(x) is an even function. (2.15) 

Substituting expression (2.14) for g’(x) into Eq. (2.11) and taking into account assumptions (2.15) 
we obtain the equations 

%;‘+‘, =%tW+‘) + lJ[Tu&(u;y) -%2(u;y)] = -R-%$,a- ;&(I + &,,a* (2.16) 

P(u) = PI(a) + iP,(u) = i$( 1 + T2)u2 + if[df,(u; y) - ~2(u; ty)] 
0 

(2.17) 

where 

LQZ; yf) = jcosa(x, u)W(x)&, 
OAlZ7 

Z2(u; yf) = jxsina(*, Qx)& 

0 KT 

The functions Pi(a) and P2(a), defined by equality (2.17), identically satisfy loading relation (2.1) when 
N(z) = 0, and hence we will henceforth consider only Eq. (2.16) which is a Volterra-type integral equation 
in the unknown function w(x). 

Equation (2.16) contains the parameter u, which, by virtue of relation (2.13), can be assumed to be 
small (apart from a dimensional factor Z;l). We will point out some properties of this equation, by writing 
in the general form 

%(a; v(x)) + l.w~; v(x)) = c P”f,W (2.18) 
n=O 

where we have introduced arbitrary operators that are linear in v(x). 
We will represent the solution V(X) of Eq. (2.18) in the form of a series in powers of u 

v(x) = c CLflWn(X) n=O (2.19) 

in which the functions I, are defined by the recurrence formulae 

‘&(a; WOW) = fo(a); ‘&(a; yJ,(x)) + wa; Vn-l(X)) = f,(u), n 2 1 (2.20) 

which are obtained if we substitute series (2.19) into the left-hand side of Eq. (2.18) and equate terms 
in powers of u’ in the sums obtained to the term u’f,(a) from the right-hand side of (2.18). 

Suppose that, for a certain k 2 1, 

f,,(u) = 0, n>k; sta; Wk-I(X)) = fk(U) (2.21) 

Then it follows from relations (2.20) that tl~,&) = 0 for n 2 k. In other words, conditions (2.21) lead 
to termination of series (2.19) making it possible to represent the solution w(x) in the form of a 
finite sum 

k-l 

w(x) = c P”%(X) 
n=O 

(2.22) 

The functions ~&x), as previously, are defined by formulae (2.20). 
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We will use these properties of Eq. (2.18) to construct a solution of Eq. (2.16). Comparing Eqs (2.16) 
and (2.18) we write the operators %(a; v(x)), %(a; q(x)) for Eq. (2.16) and, using formulae (2.20), obtain 
the expressions 

y,(x) = ;A;+$+‘, n = 0,1,2 )..., x20 (2.23) 

in which the coefficients AZ are found from the recurrence formulae 

60 60 A; = -‘&, A; = -26,6, -[( 1 - ?)6, + 22y,l 

where 

(2.24) 

(2.25) 

Remark 1. The solution of Eq. (2.16) can be obtained by representing it in the form of a power series, by analogy 
with the approach developed earlier in [9, lo] 

y(x) = z A,.?, xl 0 (2.26) 
n=O 

By substituting this series into Eq. (2.16) we can obtain recurrence formulae for& and establish that expressions 
(2.19) and (2.26) are equivalent as solutions of Eq. (2.16). 

Remark 2. The quantities defined by the integrals (2.25) satisfy the PoincarbPerron difference equations 

Y n+2 

i 1 
= (n+1)2+n2-22 Yrl 

iI 

(n - 1)n Yn-2 

6 n+2 (n+ l)(n+2) 6, -(n+ l)(n+2) S,-, i 1 

and are the coefficients of the expansion in a power series of the solution of Heun’s class of differential equation 
[ll, 121. Previously the quantities ‘yn and S,, were obtained when solving the problem of the indentation of a punch 
of polynomial form with adhesion into an elastic half-plane [9, lo]. 

The correct use of representation (2.19) for the function v(x) requires an investigation of the 
convergence of the corresponding series, which meets with some difficulties due to the complex form 
of definition (2.24) of the coefficients& The condition for series (2.19) to terminate obtained above 
enables these difficulties to be avoided, but in this case a small change in the shape of the punch is 
required. Thus, instead of relation (2.14) we put 

g’(x) = R-lx + l.tk- ’ R-‘rkxk, 3 I k is an odd number (2.27) 

where rk is an arbitrary coefficient, the choice of which is related to satisfying conditions (2.21). 
The shape of the punch (2.27) with an odd number k is symmetrical, which enables us, by using 

assumptions (2.15), as previously, to obtain an equation for t@) 

z(u; y) = - R-‘di,a - ;pR-‘(1 + ~*)6,a*- 

-CL k-‘R-lrkykak- pkR-‘rk(?jk+, + Tyk)ak+’ 
(2.28) 

which differs from Eq. (2.16) by two additional terms on the right-hand side. However, Eq. (2.28), like 
(2.16) has the form (2.18) and hence results (2.19)-(2.22) hold for it. 
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The right-hand side of Eq. (2.28) does not contain terms in powers of the parameter u higher than 
u’, so that the first condition of (2.21) is satisfied for it. The second condition of (2.21) can be satisfied 
by a corresponding choice of the coefficient rk. To do this, one must, using formulae (2.20), obtain an 
expression for the function v&t(x), which contains rk as a parameter, and substitute this expression into 
the second equality of (2.21) thereby obtaining a linear equation in rk with the solution 

The choice of the coefficient rk from formula (2.29) ensures that the representation of the solution 
V(X) of Eq. (2.28) in the form of finite sum (2.22) is correct. The functions V,(X) corresponding to this 
representation are determined from formulae (2.20) and have the form 

1 A;+$+‘, n = 0, 1,2, . . . . k-2 
v,(x) = 75 

AiXk, 
, x20 

n = k-l 

A x 
0 Yk 6k = A,-&r,=(k+ &(6,+, + ‘V,)A:, 

0 

(2.30) 

Using relation (2.13) expression (2.27) can be written in the form 

g’(x) = R%[l +Ek-’ rk(x/&)k-l] = R-‘x[l + o(ck-‘)], I&l e 1 

which shows that the second term on the right-hand side of Eq. (2.27) can be made as small as desired 
by choosing the number k to be sufficiently large. Hence, it turns out that a change in the initial shape 
g’(x) = R-lx of the punch by adding a term that is as small as desired enables one to obtain a solution 
of the problem of the indentation of a punch with adhesion into a thick strip in close form (2.22) provided 
the coefficient rk in Eq. (2.27) is determined from expression (2.29). 

Remark 3. The function v&r) in representations (2.19) or (2.22) for t&r), defined by Eqs (2.23) or (2.30) depend 
on the parameter u, and hence, as 1-1 -+ 0, we have 

y(x) + ye(x) = R-’ Ayx = -R-‘z6,6;‘x, x 2 0 

i.e. the solution for a half-plane [9, lo]. 

Remark 4. Despite the fact that the formulation and basic equations of the contact problem considered for a 
thick strip does not contain any fundamental differences from the similar problem for a half-plane, the factor that 
the width of the strip should be finite (u + 0) leads to the need to find a solution in the form of a series, whereas 
in the case of a half-plane one must confine oneself to finite sums [9, lo]. 
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